商业百科
商业百科网  > 所属分类  >  概念    教育   

椭圆方程式

编辑

椭圆方程式分两种情况 :当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);

目录

方程推导编辑本段

椭圆方程式椭圆方程式

设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。

以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的坐标分别为(-c,0),(c,0)。

设M(x,y)为椭圆上任意一点,根据椭圆定义知

|MF1|+|MF2|=2a,(a>0)

非标准方程编辑本段

其方程是二元二次方程,可以利用二元二次方程的性质进行计算,分析其特性。

几何性质编辑本段

X,Y的范围

当焦点在X轴时 -a≤x≤a,-b≤y≤b

当焦点在Y轴时 -b≤x≤b,-a≤y≤a

对称性

不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

顶点:

焦点在X轴时:长轴顶点:(-a,0),(a,0)

短轴顶点:(0,b),(0,-b)

焦点在Y轴时:长轴顶点:(0,-a),(0,a)

短轴顶点:(b,0),(-b,0)

注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻 。

焦点:

当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)

当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)

计算方法编辑本段

((其中分别是椭圆的长半轴、短半轴的长,可由圆的面积可推导出来)或(其中分别是椭圆的长轴,短轴的长) 。

圆和椭圆之间的关系:

椭圆包括圆,圆是特殊的椭圆。

您所在的用户组无法下载或查看附件

0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。